make_cnn2d_proto.py 11.5 KB
Newer Older
ntut committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#!/usr/bin/python

# Copyright 2014  Brno University of Technology (author: Karel Vesely)

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#  http://www.apache.org/licenses/LICENSE-2.0
#
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
# MERCHANTABLITY OR NON-INFRINGEMENT.
# See the Apache 2 License for the specific language governing permissions and
# limitations under the License.

# Generated Nnet prototype, to be initialized by 'nnet-initialize'.

import math, random, sys, warnings
from optparse import OptionParser

###
### Parse options
###
usage="%prog [options] <feat-dim> <num-leaves> <num-hidden-layers> <num-hidden-neurons>  >nnet-proto-file"
parser = OptionParser(usage)

parser.add_option('--activation-type', dest='activation_type', 
                   help='Select type of activation function : (<Sigmoid>|<Tanh>) [default: %default]', 
                   default='<Sigmoid>', type='string');

parser.add_option('--cnn1-num-filters', dest='cnn1_num_filters',
		   help='Number of filters in first convolutional layer [default: %default]',
		   default=128, type='int')
# this is given by splice
# parser.add_option('--cnn1-fmap-x-len', dest='cnn1_fmap_x_len',
# 	  	   help='Size of cnn1-fmap-x-len [default: %default]',
# 		   default=11, type='int')

# this should be equal to feat_raw_dim
# parser.add_option('--cnn1-fmap-y-len', dest='cnn1_fmap_y_len',
# 	  	   help='Size of cnn1-fmap-y-len [default: %default]',
# 		   default=32, type='int')

parser.add_option('--cnn1-filt-x-len', dest='cnn1_filt_x_len',
	  	   help='Size of cnn1-filt-x-len [default: %default]',
		   default=9, type='int')
parser.add_option('--cnn1-filt-y-len', dest='cnn1_filt_y_len',
	  	   help='Size of cnn1-filt-y-len [default: %default]',
		   default=9, type='int')

parser.add_option('--cnn1-filt-x-step', dest='cnn1_filt_x_step',
	  	   help='Size of cnn1-filt-x-step [default: %default]',
		   default=1, type='int')
parser.add_option('--cnn1-filt-y-step', dest='cnn1_filt_y_step',
	  	   help='Size of cnn1-filt-y-step [default: %default]',
		   default=1, type='int')
parser.add_option('--cnn1-connect-fmap', dest='cnn1_connect_fmap',
	  	   help='Size of cnn1-connect-fmap [default: %default]',
		   default=0, type='int')

parser.add_option('--pool1-x-len', dest='pool1_x_len',
	  	   help='Size of pool1-filt-x-len [default: %default]',
		   default=1, type='int')
parser.add_option('--pool1-x-step', dest='pool1_x_step',
	  	   help='Size of pool1-x-step [default: %default]',
		   default=1, type='int')


# 
parser.add_option('--pool1-y-len', dest='pool1_y_len',
	  	   help='Size of pool1-y-len [default: %default]',
		   default=3, type='int')
parser.add_option('--pool1-y-step', dest='pool1_y_step',
	  	   help='Size of pool1-y-step [default: %default]',
		   default=3, type='int')

parser.add_option('--pool1-type', dest='pool1_type',
		  help='Type of pooling (Max || Average) [default: %default]',
		  default='Max', type='string')

parser.add_option('--cnn2-num-filters', dest='cnn2_num_filters',
		   help='Number of filters in first convolutional layer [default: %default]',
		   default=256, type='int')
parser.add_option('--cnn2-filt-x-len', dest='cnn2_filt_x_len',
	  	   help='Size of cnn2-filt-x-len [default: %default]',
		   default=3, type='int')
parser.add_option('--cnn2-filt-y-len', dest='cnn2_filt_y_len',
	  	   help='Size of cnn2-filt-y-len [default: %default]',
		   default=4, type='int')
parser.add_option('--cnn2-filt-x-step', dest='cnn2_filt_x_step',
	  	   help='Size of cnn2-filt-x-step [default: %default]',
		   default=1, type='int')
parser.add_option('--cnn2-filt-y-step', dest='cnn2_filt_y_step',
	  	   help='Size of cnn2-filt-y-step [default: %default]',
		   default=1, type='int')
parser.add_option('--cnn2-connect-fmap', dest='cnn2_connect_fmap',
	  	   help='Size of cnn2-connect-fmap [default: %default]',
		   default=1, type='int')

parser.add_option('--pitch-dim', dest='pitch_dim',
		  help='Number of features representing pitch [default: %default]',
		  default=0, type='int')
parser.add_option('--delta-order', dest='delta_order',
		  help='Order of delta features [default: %default]',
		  default=2, type='int')
parser.add_option('--splice', dest='splice',
		  help='Length of splice [default: %default]',
		  default=5,type='int')
parser.add_option('--dir', dest='dirct',
		  help='Directory, where network prototypes will be saved [default: %default]',
		  default='.', type='string')
parser.add_option('--num-pitch-neurons', dest='num_pitch_neurons',
		  help='Number of neurons in layers processing pitch features [default: %default]',
		  default='200', type='int')


(o,args) = parser.parse_args()
if len(args) != 1 : 
  parser.print_help()
  sys.exit(1)
  
feat_dim=int(args[0])
### End parse options 

feat_raw_dim = feat_dim / (o.delta_order+1) / (o.splice*2+1) - o.pitch_dim # we need number of feats without deltas and splice and pitch
o.cnn1_fmap_y_len = feat_raw_dim
o.cnn1_fmap_x_len = o.splice*2+1

# Check
assert(feat_dim > 0)
assert(o.pool1_type == 'Max' or o.pool1_type == 'Average')

## Extra checks if dimensions are matching, if not match them by 
## producing a warning
# cnn1
assert( (o.cnn1_fmap_y_len - o.cnn1_filt_y_len) % o.cnn1_filt_y_step == 0 )
assert( (o.cnn1_fmap_x_len - o.cnn1_filt_x_len) % o.cnn1_filt_x_step == 0 )

# subsample1
cnn1_out_fmap_y_len=((1 + (o.cnn1_fmap_y_len - o.cnn1_filt_y_len) / o.cnn1_filt_y_step))
cnn1_out_fmap_x_len=((1 + (o.cnn1_fmap_x_len - o.cnn1_filt_x_len) / o.cnn1_filt_x_step))

# fix filt_len and filt_step
def fix_filt_step(inp_len, filt_len, filt_step):
  
  if ((inp_len - filt_len) % filt_step == 0):
    return filt_step
  else:
    # filt_step <= filt_len
    for filt_step in xrange(filt_len, 0, -1):
      if ((inp_len - filt_len) % filt_step == 0):
        return filt_step
    
o.pool1_y_step = fix_filt_step(cnn1_out_fmap_y_len, o.pool1_y_len, o.pool1_y_step)
if o.pool1_y_step == 1 and o.pool1_y_len != 1:
  warnings.warn('WARNING: Choose different pool1_y_len as subsampling is not happening');
  
o.pool1_x_step = fix_filt_step(cnn1_out_fmap_x_len, o.pool1_x_len, o.pool1_x_step)
if o.pool1_x_step == 1 and o.pool1_x_len != 1:
  warnings.warn('WARNING: Choose different pool1_x_len as subsampling is not happening');


###
### Print prototype of the network
###

# Begin the prototype
print "<NnetProto>"

# Convolutional part of network
'''1st CNN layer'''
cnn1_input_dim=feat_raw_dim * (o.delta_order+1) * (o.splice*2+1)
cnn1_out_fmap_x_len=((1 + (o.cnn1_fmap_x_len - o.cnn1_filt_x_len) / o.cnn1_filt_x_step))
cnn1_out_fmap_y_len=((1 + (o.cnn1_fmap_y_len - o.cnn1_filt_y_len) / o.cnn1_filt_y_step))
cnn1_output_dim=o.cnn1_num_filters * cnn1_out_fmap_x_len * cnn1_out_fmap_y_len

'''1st Pooling layer'''
pool1_input_dim=cnn1_output_dim
pool1_fmap_x_len=cnn1_out_fmap_x_len
pool1_out_fmap_x_len=((1 + (pool1_fmap_x_len - o.pool1_x_len) / o.pool1_x_step))
pool1_fmap_y_len=cnn1_out_fmap_y_len
pool1_out_fmap_y_len=((1 + (pool1_fmap_y_len - o.pool1_y_len) / o.pool1_y_step))
pool1_output_dim=o.cnn1_num_filters*pool1_out_fmap_x_len*pool1_out_fmap_y_len

'''2nd CNN layer'''
cnn2_input_dim=pool1_output_dim
cnn2_fmap_x_len=pool1_out_fmap_x_len
cnn2_out_fmap_x_len=((1 + (cnn2_fmap_x_len - o.cnn2_filt_x_len) / o.cnn2_filt_x_step))
cnn2_fmap_y_len=pool1_out_fmap_y_len
cnn2_out_fmap_y_len=((1 + (cnn2_fmap_y_len - o.cnn2_filt_y_len) / o.cnn2_filt_y_step))
cnn2_output_dim=o.cnn2_num_filters * cnn2_out_fmap_x_len * cnn2_out_fmap_y_len


convolution_proto = ''

convolution_proto += "<Convolutional2DComponent> <InputDim> %d <OutputDim> %d <FmapXLen> %d <FmapYLen> %d <FiltXLen> %d <FiltYLen> %d <FiltXStep> %d <FiltYStep> %d <ConnectFmap> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f\n" % \
    ( cnn1_input_dim, cnn1_output_dim, o.cnn1_fmap_x_len, o.cnn1_fmap_y_len, o.cnn1_filt_x_len, o.cnn1_filt_y_len, o.cnn1_filt_x_step, o.cnn1_filt_y_step, o.cnn1_connect_fmap, 0.0, 0.0, 0.01 )
convolution_proto += "<%sPooling2DComponent> <InputDim> %d <OutputDim> %d <FmapXLen> %d <FmapYLen> %d <PoolXLen> %d <PoolYLen> %d <PoolXStep> %d <PoolYStep> %d\n" % \
    ( o.pool1_type, pool1_input_dim, pool1_output_dim, pool1_fmap_x_len, pool1_fmap_y_len, o.pool1_x_len, o.pool1_y_len, o.pool1_x_step, o.pool1_y_step )
convolution_proto += "<Rescale> <InputDim> %d <OutputDim> %d <InitParam> %f\n" % \
    ( pool1_output_dim, pool1_output_dim, 1.0 )
convolution_proto += "<AddShift> <InputDim> %d <OutputDim> %d <InitParam> %f\n" % \
    ( pool1_output_dim, pool1_output_dim, 0.0 )
convolution_proto += "%s <InputDim> %d <OutputDim> %d\n" % \
    ( o.activation_type, pool1_output_dim, pool1_output_dim )
convolution_proto += "<Convolutional2DComponent> <InputDim> %d <OutputDim> %d <FmapXLen> %d <FmapYLen> %d <FiltXLen> %d <FiltYLen> %d <FiltXStep> %d <FiltYStep> %d <ConnectFmap> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f\n" % \
    ( cnn2_input_dim, cnn2_output_dim, cnn2_fmap_x_len, cnn2_fmap_y_len, o.cnn2_filt_x_len, o.cnn2_filt_y_len, o.cnn2_filt_x_step, o.cnn2_filt_y_step, o.cnn2_connect_fmap, -2.0, 4.0, 0.1 )
convolution_proto += "<Rescale> <InputDim> %d <OutputDim> %d <InitParam> %f\n" % \
    ( cnn2_output_dim, cnn2_output_dim, 1.0)
convolution_proto += "<AddShift> <InputDim> %d <OutputDim> %d <InitParam> %f\n" % \
    ( cnn2_output_dim, cnn2_output_dim, 0.0)
convolution_proto += "%s <InputDim> %d <OutputDim> %d\n" % \
    ( o.activation_type, cnn2_output_dim, cnn2_output_dim)

if (o.pitch_dim > 0):
  # convolutional part
  f_conv = open('%s/nnet.proto.convolution' % o.dirct, 'w')
  f_conv.write('<NnetProto>\n')
  f_conv.write(convolution_proto)
  f_conv.write('</NnetProto>\n')
  f_conv.close()
  
  # pitch part
  f_pitch = open('%s/nnet.proto.pitch' % o.dirct, 'w')
  f_pitch.write('<NnetProto>\n')
  f_pitch.write('<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f\n' % \
		((o.pitch_dim * (o.delta_order+1) * (o.splice*2+1)), o.num_pitch_neurons, -2.0, 4.0, 0.109375))
  f_pitch.write('%s <InputDim> %d <OutputDim> %d\n' % \
		(o.activation_type, o.num_pitch_neurons, o.num_pitch_neurons))
  f_pitch.write('<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f\n' % \
		(o.num_pitch_neurons, o.num_pitch_neurons, -2.0, 4.0, 0.109375))
  f_pitch.write('%s <InputDim> %d <OutputDim> %d\n' % \
		(o.activation_type, o.num_pitch_neurons, o.num_pitch_neurons))
  f_pitch.write('</NnetProto>\n')
  f_pitch.close()

  # paralell part
  vector = ''
  for i in range(1, (feat_raw_dim + o.pitch_dim) * (o.delta_order+1) * (o.splice*2+1), feat_raw_dim + o.pitch_dim):
    vector += '%d:1:%d ' % (i, i + feat_raw_dim - 1)
  for i in range(feat_raw_dim+1, (feat_raw_dim + o.pitch_dim) * (o.delta_order+1) * (o.splice*2+1), feat_raw_dim + o.pitch_dim):
    vector += '%d:1:%d ' % (i, i + o.pitch_dim - 1)
  print '<Copy> <InputDim> %d <OutputDim> %d <BuildVector>  %s </BuildVector> ' % \
	((feat_raw_dim + o.pitch_dim) * (o.delta_order+1) * (o.splice*2+1), (feat_raw_dim + o.pitch_dim) * (o.delta_order+1) * (o.splice*2+1), vector)
  print '<ParallelComponent> <InputDim> %d <OutputDim> %d <NestedNnetProto> %s %s </NestedNnetProto>' % \
	((feat_raw_dim + o.pitch_dim) * (o.delta_order+1) * (o.splice*2+1), o.num_pitch_neurons + cnn2_output_dim, '%s/nnet.proto.convolution' % o.dirct, '%s/nnet.proto.pitch' % o.dirct)

  num_convolution_output = o.num_pitch_neurons + cnn2_output_dim
else: # no pitch
  print convolution_proto

# We are done!
sys.exit(0)