#!/usr/bin/env python # Copyright 2012 Brno University of Technology (author: Karel Vesely) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # ./gen_dct_mat.py # script generates matrix with DCT transform, which is sparse # and takes into account that data-layout is along frequency axis, # while DCT is done along temporal axis. from math import * import sys from optparse import OptionParser parser = OptionParser() parser.add_option('--fea-dim', dest='dim', help='feature dimension') parser.add_option('--splice', dest='splice', help='applied splice value') parser.add_option('--dct-basis', dest='dct_basis', help='number of DCT basis') (options, args) = parser.parse_args() if(options.dim == None): parser.print_help() sys.exit(1) dim=int(options.dim) splice=int(options.splice) dct_basis=int(options.dct_basis) timeContext=2*splice+1 #generate the DCT matrix M_PI = 3.1415926535897932384626433832795 M_SQRT2 = 1.4142135623730950488016887 #generate sparse DCT matrix print '[' for k in range(dct_basis): for m in range(dim): for n in range(timeContext): if(n==0): print m*'0 ', else: print (dim-1)*'0 ', print str(sqrt(2.0/timeContext)*cos(M_PI/timeContext*k*(n+0.5))), if(n==timeContext-1): print (dim-m-1)*'0 ', print print print ']'