# encoder related encoder: transformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true # decoder related decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 # hybrid CTC/attention model_conf: ctc_weight: 0.3 lsm_weight: 0.1 # label smoothing option length_normalized_loss: false # minibatch related # batch_type: folded # batch_size: 32 # optimization related batch_type: numel batch_bins: 16000000 accum_grad: 4 # grad_clip : 5 max_epoch: 200 # patience: 3 patience: none init: xavier_uniform val_scheduler_criterion: - valid - acc best_model_criterion: - - valid - acc - max keep_nbest_models: 10 # NoamLR is deprecated. Use WarmupLR. optim: adam optim_conf: lr: 0.002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2